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Abstract

The coupling between longitudinal, lateral and torsional vibrations is studied together for a rotating
cracked shaft. These coupling mechanisms have been studied here with a response-dependent non-linear
breathing crack model. Most of the earlier work on coupled vibrations due to crack has been either on
stationary shaft or on rotating shaft with open crack model. The stiffness matrix of a Timoshenko beam
element is modified to account for the effect of a crack and all the six degrees of freedom per node
are considered. Coupled torsional–longitudinal vibrations for a cracked rotor that has not been reported
earlier and coupled torsional–bending vibrations with a breathing crack model have been studied. An
attempt has been made to reveal crack specific signatures by using additional external excitations. Since all
the couplings are accounted, the excitation in one mode leads to an interaction between all the modes. This,
coupled with the rotational effect of a cracked rotor and the non-linearities due to a breathing crack
model introduces sum and difference frequencies in the response of cracked rotor. The co-existence of
frequencies of other modes in the frequency spectra of a particular mode and the presence of sum and
difference frequencies around the excitation frequencies and its harmonics could be useful indicators for
crack diagnosis.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Fatigue cracks are a potential source of catastrophic failures in rotors. Researchers have put in
considerable effort to develop a foolproof and reliable strategy to detect cracks in rotors. Twice
the running frequency component and the subharmonic resonance at approximately half the
bending critical speed of the rotor have been reported to be the two prominent crack indicators.

ARTICLE IN PRESS

*Corresponding author. Tel.: +91-116-591122; fax: +91-116-851169.

E-mail address: kgupta@mech.iitd.ernet.in (K. Gupta).

0022-460X/03/$ - see front matter r 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/S0022-460X(03)00003-8



Broadly, the efforts were made to first model the crack accounting for the reduction in the
stiffness of the rotor segment, followed by modelling and use of stiffness variation in the equations
of motion to estimate the rotor response. Dimarogonas and Papadopoulos [1] carried out analysis
of cracked rotor neglecting the non-linear behaviour of the crack by assuming constant stiffness
asymmetry and using theory of shafts with dissimilar moments of inertia. Later they derived a
complete flexibility matrix of the cross-section containing the crack [2]. The flexibility matrix
derived corresponds to a fully open crack. Later several researchers used this flexibility matrix to
model a cracked rotor. The flexibility in rotor fixed direction was assumed to remain constant and
thus equations of motion for cracked rotor were similar to an asymmetric shaft. To model the
breathing of the crack, Grabowski [3] suggested switching of the stiffness values from those of an
uncracked rotor (closed crack state) to those of cracked rotor (fully open state) at a particular
rotor angular position (when crack edge becomes vertical). Alternatively the switching takes place
when there is a change in the sign of rotor response in rotor fixed co-ordinate in crack direction
(perpendicular to crack edge), which is referred as hinge model, introduced by Gasch [4] in 1976.
Mayes and Davis [5] suggested sinusoidal stiffness variation to model the breathing in a more
sensible way as a rotor crack is expected to open and close gradually due to gravity. Later Nelson
and Nataraj [6] treated the finite element formulation of a crack element. They used rotating
stiffness variation that depended on rotor curvature at crack section. Papadopoulos and
Dimarogonas [7] represented stiffness variation by way of a truncated, four term series using
known stiffness matrices corresponding to half open-half close, fully open and fully closed crack.
Schmalhorst [8] used contact segments on the face of crack in a FE model to help decide which
part of the crack face is under pressure and hence the breathing behaviour of the cracked part.
Change et al. [9] represented the crack as a hinge with variable stiffness in two rotor-fixed lateral
directions. The crack is introduced at a node of finite element model. The stiffness change is again
dependent on direction of bending moment at the crack cross-section. Wauer [10] replaced the
local geometric discontinuity by a discontinuity in load and used Galerkin’s method to obtain
response. The crack is assumed completely closed or completely open depending on the rotor
curvature. Ostachowicz and Krawczuk [11] used finite element model with a modified stiffness
matrix of beam accounting for the effect of crack and considering all but axial degree of freedom.
They found lateral response to torsional excitation for a rotating shaft with open crack. Sekhar
and Prabhu [12] used finite element model for the cracked rotor with open crack and studied
possibility of backward whirl and fluctuation of bending stresses due to crack. Abraham and
Brandon [13] proposed a substructure approach for modelling breathing behaviour of crack using
Lagrange multipliers.
Papadopoulos and Dimarogonas [2,14–16] have extensively addressed the issue of

coupling of vibrations due to crack. They proposed the presence of either of bending, longitudinal
or torsional mode natural frequency in the vibration spectra of the other modes as a
potential indicator of crack in the shaft. For this purpose they used harmonic sweeping
excitation. The excitation, however, is given to non-rotating shaft. Ostachowicz and
Krawczuk [11] demonstrated coupling of torsional and bending vibration in a rotating shaft
using an open crack model. Muszynska et al. [17] discussed torsional/lateral vibration
cross-coupled response due to shaft anisotropy. Presence of subharmonic torsional resonance is
experimentally observed when rotational speed is at 1/8, 1/6, 1/4 and 1/2 of first torsional
critical speed.
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Collins et al. [18] and Darpe et al. [19] used impulse axial excitation to a rotating cracked shaft
and exploited this coupling mechanism in lateral and longitudinal directions of a cracked rotor for
the purpose of diagnosis of crack. Thus not only the natural frequency component but also the
combination harmonics, due to interaction of rotational frequency and its harmonics with the
constant excitation frequency and its harmonics, have been shown to appear in the spectrum [19].
Coupled flexural–torsional response of a cracked rotating shaft during passage through a critical
speed has been investigated by Suherman and Plaut [20]. To the best of the author’s knowledge,
these studies [18–20] are the only one accounting for crack closing in case of coupled vibrations of
cracked rotor.
Although a 6� 6 flexibility matrix has been used in the analytical models of a non-rotating

shaft by previous researchers for studying coupling, a finite element with all the six degrees of
freedom accounting for all the coupling mechanisms has not been used to explore coupling of
various modes in a rotating shaft. Most of the previous work that addressed the coupling has been
on stationary (non-rotating) shaft [14–16]. Those who addressed the issue of coupling in a rotating
cracked shaft either used only one coupling (bending–longitudinal [2,17,18] and torsional–
bending [11]) or used open crack model [2,11]. An open crack model is an unrealistic model and
can give different results from those obtained with a more appropriate breathing crack model.
The work of Papadopoulos and Dimarogonas [16] is the only one that studied coupling between
all the three modes of vibration, although it was for a non-rotating shaft with open crack.
Papadopoulos and Dimarogonas [14,15] have emphasized the need for further analysis with non-
linear effects of breathing crack model for rotating shafts. To the best of authors information, the
torsional–axial vibrations for a cracked rotor has not been yet studied.
In this paper an attempt is made to address some of the issues mentioned above. The work

presented accounts for coupling between longitudinal, lateral and torsional vibrations for a
rotating cracked shaft using a response-dependent non-linear breathing crack model. The stiffness
matrix of a beam element is modified to account for the effect of a crack and all the six degrees of
freedom per node are considered. By including the axial degree of freedom in the present analysis,
the stiffness matrix formulated is an extension of the one developed by Ostachowicz and
Krawczuk [11]. This has made possible the analysis of coupling of longitudinal vibrations with
bending and torsional vibrations of a cracked rotating shaft. In addition, a refined breathing crack
model that accounts for partial opening/closing of crack through sign of stress intensity factor at
the crack edge is used.

2. Finite element model of a cracked rotor segment

Consider a rotor segment containing a single transverse surface crack. To represent this
segment in the finite element model of the cracked rotor system, the rotor segment is represented
by a beam element with six degrees of freedom per node. However, to account for the presence of
a crack, the stiffness matrix of the beam element is modified. The modified stiffness matrix takes
into account all the coupling phenomena that exists in a cracked rotor, i.e., bending–longitudinal,
bending–torsion, longitudinal–torsion. The beam element with modified stiffness matrix then fits
into the complete finite element assemblage representing a rotor–bearing system and is used for
further analysis.
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Consider a shaft element containing a transverse surface crack of depth a as shown in Fig. 1. A
small shaft segment around the crack cross-section in the rotor will be modelled as a finite beam
element that will be different than the usual beam element with regard to its stiffness properties.
Let the shaft element be of diameter D and length l. The element is loaded with shear forces P2, P3

and P8, P9, bending moments P4, P5 and P11, P12, axial forces P1 and P7 and torsional moments
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Fig. 1. Shaft finite element. (a) The element showing forces acting and co-ordinate system. (b) Crack cross-section.

(c) A simple rotor and its finite element model.
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P4 and P10. Thus, all the six degrees of freedom per node is considered here. The crack is situated
at a distance x from the left end of the element.
The flexibility matrix of the crack element is first derived. Using Castingliano’s theorem,

ui ¼
@U

@Pi

; ð1Þ

where U is the total strain energy. That is,

U ¼ U0 þ Uc: ð2Þ

Here, U0 is the strain energy of the uncracked shaft element; Uc the strain energy due to crack
Let ui and Pi are displacement and force respectively along the ith co-ordinate. Thus,

ui ¼
@U0

@Pi

þ
@Uc

@Pi

which can be written as

ui ¼ u0i þ uc
i ; ð3Þ

where

u0i ¼
@U0

@Pi

; uc
i ¼

@Uc

@Pi

: ð4Þ

Using the strain energy approach, both u0i and uc
i will be derived. Considering the action of axial

forces, torsion and bending moments and also accounting for shearing action at the cross-section
of the crack the elastic strain energy of the element can be written as

U0 ¼
1

2

Z
asV

2
1

GA
þ

asV
2
2

GA
þ

M2
1

EI
þ

M2
2

EI
þ

T2

GI0
þ

F2

AE

� �
dx ð5Þ

where V1, V2 are shear forces, M1, M2 are bending moments, T is torsional moment, F is the axial
force acting at the crack cross-section, G is modulus of rigidity, E is Young’s modulus, I is the area
moment of inertia of the cross-section, I0 is the polar moment of inertia of the cross-section and as

is the shear coefficient.
From Fig. 1,

V1 ¼ P2; V2 ¼ P3; T ¼ P4; F ¼ P1; M1 ¼ P2x � P6 and M2 ¼ P3x þ P5: ð6Þ

Thus, Eq. (5) now becomes,

U0 ¼
1

2

P2
1l

AE
þ

asP
2
2l

GA
þ

P2
2l
3

3EI
þ

asP
2
3l

GA
þ

P2
3l
3

3EI
þ

P2
4l

GI0
þ

P2
5l

EI
þ

P2
6l

EI
�

P2P6l
2

EI
þ

P3P5l
2

EI

� �
: ð7Þ

Now the individual displacements u0i can be written as

u01 ¼
@U0

@P1
¼

d

dP1

1

2

P2
1l

AE

� �
;

u01 ¼
P1l

AE
: ð8Þ
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Similarly

u02 ¼
@U0

@P2
¼

d

dP2

1

2

asP
2
2l

GA
þ

P2
2l
3

3EI

� �
�
1

2

P2P6l
2

EI

� �
;

u02 ¼
asl

GA
þ

l3

3EI

� �
P2 �

l2

2EI
P6: ð9Þ

Following similar procedure we get

u03 ¼
asl

GA
þ

l3

3EI

� �
P3 þ

l2

2EI
P5; ð10Þ

u04 ¼
l

GI0
P4; ð11Þ

u05 ¼
l

EI
P5 þ

l2

2EI
P3; ð12Þ

u06 ¼
l

EI
P6 �

l2

2EI
P2: ð13Þ

The displacements u0i using elastic strain energy of uncracked shaft element has been obtained.
Now additional displacements uc

i due to crack can be found using strain energy due to crack as
follows:

uc
i ¼

@Uc

@Pi

;

where Uc is the strain energy due to the presence of crack, uc
i ; Pi are additional displacement and

load in direction i due to crack.
Using concepts of fracture mechanics, the additional strain energy due to crack is given by the

following expression:

Uc ¼
Z

A

JðAÞ dA; ð14Þ

where J(A) is strain energy density function and is expressed as

JðAÞ ¼
1

E0

X6
i¼1

KIi

 !2

þ
X6
i¼1

KIIi

 !2

þm
X6
i¼1

KIIIi

 !2
2
4

3
5: ð15Þ

Here E0 ¼ E=ð1� nÞ and m ¼ 1þ n; n is the Poisson ratio and KIi is the stress intensity factors
corresponding to the opening mode of crack displacement, KIIi is the stress intensity
factors corresponding to the sliding mode of crack displacement and KIIIi is the stress intensity
factors corresponding to the shearing mode of crack displacement; i ¼ 126:
These stress intensity factors (SIF) are given as follows:

SIF for Mode I:

KI1 ¼ s1
ffiffiffiffiffiffi
pa

p
F1ða=hÞ;

s1 ¼
P1

pR2
:
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Hence

KI1 ¼
P1

pR2

ffiffiffiffiffiffi
pa

p
F1ða=hÞ; ð16Þ

KI5 ¼ s5
ffiffiffiffiffiffi
pa

p
F1ða=hÞ;

s5 ¼
M2b

p=64D4
;

and moment M2 ¼ ðP5 þ P3xÞ:
Hence,

KI5 ¼
4ðP5 þ P3xÞb

pR4

ffiffiffiffiffiffi
pa

p
F1ða=hÞ; ð17Þ

KI6 ¼ s6
ffiffiffiffiffiffi
pa

p
F2ða=hÞ;

s6 ¼
M1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � b2

q
p=64D4

;

and moment M1 ¼ ðP2x � P6Þ;

KI6 ¼
2ðP2x � P6Þh

pR4

ffiffiffiffiffiffi
pa

p
F2ða=hÞ; ð18Þ

KI2 ¼ KI3 ¼ KI4 ¼ 0: ð19Þ

SIF for Mode II:

KII2 ¼ s2
ffiffiffiffiffiffi
pa

p
FIIða=hÞ;

s2 ¼
kP2

pR2
:

Hence,

KII2 ¼
kP2

pR2

ffiffiffiffiffiffi
pa

p
FIIða=hÞ; ð20Þ

KII4 ¼ s4II
ffiffiffiffiffiffi
pa

p
FIIða=hÞ;

s4II ¼
P4b

p=32D4
:

Hence,

KII4 ¼
2P4b
pR4

ffiffiffiffiffiffi
pa

p
FIIða=hÞ; ð21Þ

KII1 ¼ KII3 ¼ KII5 ¼ KII6 ¼ 0: ð22Þ
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SIF for Mode III:

KIII3 ¼ s3
ffiffiffiffiffiffi
pa

p
FIIIða=hÞ;

s3 ¼
kP3

pR2
:

Hence,

KIII3 ¼
kP3

pR2

ffiffiffiffiffiffi
pa

p
FIIIða=hÞ; ð23Þ

KIII4 ¼ s4III
ffiffiffiffiffiffi
pa

p
FIIIða=hÞ;

s4III ¼
P4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � b2

q
p=32D4

:

Hence,

KIII4 ¼
P4h

pR4

ffiffiffiffiffiffi
pa

p
FIIIða=hÞ; ð24Þ

KIII1 ¼ KIII2 ¼ KIII5 ¼ KIII6 ¼ 0;

where,

F1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a0

pa0
tan

pa
2a0

� �r
0:752þ 2:02ða=a0Þ þ 0:37½1� sinðpa=2a0Þ	3

cos pa=2a0
� � ;

F2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a0

pa
tan

pa
2a0

� �r
0:923þ 0:199½1� sinðpa=2a0Þ	4

cosðpa=2a0Þ
;

FII ¼
1:122� 0:561ða=a0Þ þ 0:085ða=a0Þ2 þ 0:18ða=a0Þ3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ða=a0Þ
p ;

FIII ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a0

pa
tan

pa
2a0

� �r
:

Using these SIF expressions in Eq. (15) and using J(A) in Eq. (14), we get

uc
1 ¼ ½P1Ig1 þ ðxP2 � P6ÞIg2 þ ðxP3 þ P5ÞIg3	;

uc
2 ¼ ½xIg2P1 þ Ig4P2 þ ðxP2 � P6ÞxIg5 þ ðxP3 þ P5ÞxIg6 þ Ig7P4	;

uc
3 ¼ ½xIg3P1 þ Ig10P4 þ ðxP2 � P6ÞxIg6 þ ðxP3 þ P5ÞxIg8 þ Ig9P3	;

uc
4 ¼ ½R2Ig7P2 þ Ig10P3 þ ðIg11 þ Ig12ÞP4	;

uc
5 ¼ ½Ig3P1 þ ðxP2 � P6;ÞIg6 þ ðxP3 þ P5ÞIg8	;

uc
6 ¼ ½�Ig2P1 � ðxP2 � P6ÞIg5 � ðxP3 þ P5ÞIg6	;
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where

Ig1 ¼
Z

A

2aF2
1

pER4
dA; Ig2 ¼

Z
A

4haF1F2

pER6
dA; Ig3 ¼

Z
A

8baF2
1

pER6
dA;

Ig4 ¼
Z

A

2k2aF2
II

pER4
dA; Ig5 ¼

Z
A

8h2aF2
2

pER8
dA; Ig6 ¼

Z
A

16hbaF1F2

pER8
dA;

Ig7 ¼
Z

A

4kabF2
II

pER8
dA; Ig8 ¼

Z
A

32b2aF2
1

pER8
dA; Ig9 ¼

Z
A

2mk2aF2
III

pER4
dA;

Ig10 ¼
Z

A

2mkhaF2
III

pER6
dA; Ig11 ¼

Z
A

8b2aF2
II

pER8
dA; Ig12 ¼

Z
A

2mh2aF2
III

pER8
dA: ð25Þ

Thus the total displacement ui can now be obtained by adding u0i to uc
i (Eq. (3)) using Eqs. (8)–(13)

and (25). The resulting equation can be written in matrix form as

ui ¼ G½ 	Pi; i ¼ 126: ð26Þ

Here G is a flexibility matrix given by

G ¼

g11 g12 g13 g14 g15 g16

g21 g22 g23 g24 g25 g26

g31 g32 g33 g34 g35 g36

g41 g42 g43 g44 g45 g46

g51 g52 g53 g54 g55 g56

g61 g62 g63 g64 g65 g66

2
6666666664

3
7777777775
; ð27Þ

where

g11 ¼
l

AE
þ Ig1; g22 ¼

asl

GA
þ

l3

3EI

� �
þ ðIg4 þ x2Ig5Þ; g33 ¼

asl

GA
þ

l3

3EI

� �
þ ðIg9 þ x2Ig8Þ;

g44 ¼
l

GI0
þ Ig11 þ Ig12; g55 ¼

l

EI
þ Ig8; g66 ¼

l

EI
þ Ig5; g12 ¼ g21 ¼ xIg2;

g13 ¼ g31 ¼ xIg3; g15 ¼ g51 ¼ Ig3; g16 ¼ g61 ¼ �Ig2; g23 ¼ g32 ¼ x2Ig6;

g24 ¼ g42 ¼ R2Ig7; g34 ¼ g43 ¼ Ig10; g25 ¼ g52 ¼ xIg6; g35 ¼ g53 ¼
l2

2EI
þ xIg8;

g26 ¼ g62 ¼ �
l2

2EI
� xIg5; g36 ¼ g63 ¼ �xIg6; g56 ¼ g65 ¼ �Ig6: ð28Þ

The flexibility matrix is now used to find the stiffness matrix using the transformation matrix T

considering static equilibrium of the finite element.

q1212f gT¼ T½ 	 q126f gT; ð29Þ
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where the transformation matrix is given by

½T 	T ¼

1 0 0 0 0 0 �1 0 0 0 0 0

0 1 0 0 0 0 0 �1 0 0 0 l

0 0 1 0 0 0 0 0 �1 0 �l 0

0 0 0 1 0 0 0 0 0 �1 0 0

0 0 0 0 1 0 0 0 0 0 �1 0

0 0 0 0 0 1 0 0 0 0 0 �1

2
6666666664

3
7777777775
: ð30Þ

Thus, the stiffness matrix of the crack element is written as

½K 	c ¼ ½T 	½G	½T 	T: ð31Þ

3. Modelling of breathing behaviour of crack

When the rotor is operating at a steady state speed far away from critical speed and without any
transient excitation, the breathing of the crack can be approximated either by sinusoidal stiffness
variation or by stepwise stiffness fluctuation. However, a truly breathing behaviour can be
represented by taking into account the gradual opening and closing of the crack using the stress
intensity factor at the crack front at each instant and then finding the amount of crack opening
and hence the stiffness. In this way, apart from getting a more accurate estimation of stiffness and
more realistic representation of breathing, the model would be adaptable for all speed ranges and
all type of excitations, steady as well as transient.
The integration limits for the evaluation of the flexibility coefficients using Eq. (28) are to be

taken for full width from �b to b (b is half-width of the crack (Fig. 1b)) and for full depth from 0
to a if the crack is fully open. Papadopoulos and Dimarogonas [2] and later mostly other
researchers found the local flexibility assuming the fully open crack. Using these flexibility values
corresponding to fully open crack, the stiffness variation is expressed in various ways as
mentioned earlier in Section 1. However, since in practice the crack breathes, opening gradually
from fully closed to fully open state and thereafter closes gradually to fully closed state from the
fully open condition, proper integration limits need to be considered to evaluate stiffness values.
These limits depend on the amount of crack opening [6]. For fully open crack the limits can be
taken from �b to b, whereas for half open half closed crack these limits would be either from 0 to
b or from �b to 0 depending upon which half of the crack is open.
To be able to study the flexibility variation with amount of crack opening, a concept of crack

closure line (CCL) is proposed. The crack closure line is an imaginary line perpendicular to the
crack edge. It separates the open and closed parts of the crack as illustrated in Fig. 2. The crack
edge is divided into 50 points in the present case. The position of CCL keeps changing along the
crack edge (say from 1 to 50 while opening from B to A and from 50 to 100 while closing from B
to A) as the rotor rotates clockwise. When the rotor is at initial position (Fig. 2a), the crack edge is
on the compression region and is closed completely under the action of gravity. As the rotor starts
rotating clockwise, part of the crack near end ‘B’ opens up. The crack edge opens fully when it
comes on the lower side in the tensile region at y=180� (Fig. 2e). At this position the CCL has
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travelled from one corner B to the other corner A. When the rotor rotates further the corner B
starts to close till the crack completely closes at y=360�. Thus the CCL positions (CCLP) of 1 and
100 indicate fully closed crack state, whereas CCLP of 50 indicates fully open crack state. CCLP
of 25 indicates half open–half closed condition (right half open) and CCLP of 75 indicates half
closed–half open condition (left half open) of the crack. Thus the continuous change of CCLP is
indicative of breathing of the crack.
The variation of various flexibility coefficients as a function of crack closure line position is

shown in Fig. 3. The flexibility coefficients are found for a crack finite element of diameter
d=0.015 and length of L=0.05 with a crack of depth %a ¼ 0:4: All the direct flexibility coefficients
(g11, g22, g33, g44, g55 and g66) increase to a maximum when the crack fully opens (near CCLP of
50). However, some of the cross-coupled flexibility coefficients (g13, g15, g23, g24, g25, g36 and g56)
are zero when the crack fully opens. These coefficients have been earlier reported to be non-zero
because the integration therein has been carried out from 0 to b followed by doubling the resulting
integral value [2]. However, the value of the integral from 0 to b and that obtained from �b to 0 is
of same numerical value but have opposite sign. It may also be noted that the flexibility coefficient
g35 and g26 are non-zero at fully closed state and they increase in magnitude as the crack opens.
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The variation of stiffness coefficients obtained from Eq. (31) with respect to crack closure line
position is shown in Fig. 4. As the crack gradually opens, all the stiffness values drop from those
corresponding to uncracked shaft element till they become minimum at the fully open crack
position (CCLP=50). The stiffness variation is not quite noticeable for shallow depths of %a ¼ 0:1
but is substantial for deeper crack ( %a > 0:2). The drop in stiffness with crack depth is clearly non-
linear. Thus, we find that the crack breathing behaviour has significant influence on the variation
of stiffness coefficients.
The calculation of stiffness of crack element and the response estimation are interdependent.

This is because the response is dependent on the stiffness values used in the equation of motion
and stiffness values are estimated from the response using the sign of SIF values. The equation of
motion in stationary co-ordinates is

½M	sf .qgs þ ½C	sf ’qgs þ ½K 	sfqgs ¼ ff gs; ð32Þ

where [M]s, [C]s and [K]s are mass, damping and stiffness matrices for the rotor system in
stationary co-ordinate system. Of these, only stiffness matrix is constantly updated, usually after
every degree of rotation, as it is assumed response dependent. Scheme of updating the stiffness
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Fig. 3. Variation of flexibility coefficients for different amount of crack opening for a crack element with %a ¼ 0:4;
l=0.05 and d=0.015.
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matrix is discussed in the following paragraph. The mass and damping matrices are assumed
constant. Proportional damping matrix is assumed here with ½C	s ¼ ad ½Kuc	 þ bd ½M	; where the
constants ad and bd are assumed equal to 0.8132 and 1.3623e-5 respectively. These constants are
evaluated based on the assumption of modal damping ratios of 0.005 and 0.01 in first two modes
of the uncracked rotor system. [Kuc] is the stiffness matrix without crack. The force vector {f}s

contains gravity and unbalance excitation forces. If applied, torsional excitation terms also appear
in the force vector. In the Newmark method of direct integration of equations of motion,
integration parameters ai=0.25 and di=0.5 [21] are used to estimate the response of the rotor.
The integration time step Dt is assumed to be 1/50th of the time required for a degree of rotation,
which even for a slow speed of 22 rad/s is sufficiently small (1.5867e-5 s). Since the axial vibrations
are studied, the sampling frequency with this integration time step is more than 63 000Hz, which
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Fig. 4. Variation of various stiffness coefficients with amount of crack opening for different crack depth ratios

(d=0.015, l=0.05).
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is sufficient to track even the natural frequency of longitudinal vibrations (1150Hz). Finer time
step has not shown any influence on the response.
To evaluate the response, an initial assumed response vector {q}s corresponding to the static

deflection of the uncracked rotor and initial stiffness matrix [K]s, corresponding to the stiffness of
the uncracked rotor is assumed. The equations are solved in the stationary co-ordinate system.
The integration is carried out for time equal to a degree of rotation during which stiffness matrix
is assumed constant. After every degree of rotation the stiffness matrix [K]s needs to be updated to
take care of the breathing behaviour of the cracked rotor. For this purpose, the forces on the
crack edge need to be evaluated in the rotor-fixed-co-ordinates. Hence, the new response vector
{q}s obtained from the integration of Eq. (32) is used to find the response in the rotor-fixed co-
ordinates {q}r using an appropriate co-ordinate transformation matrix, Tg [21]. The nodal forces
are then calculated as

½P	 ¼ ½K 	rfqgr: ð33Þ

The above nodal forces are used to find the SIF along the crack edge. The nodal forces are used in
Eqs. (16)–(18) to evaluate stress intensity factors. Overall value of SIF (K0) at 50 equally spaced
points along the crack edge is evaluated using following relation:

K0 ¼ KI1 þ KI5 þ KI6: ð34Þ

In the above equation only KI1, KI5, KI6 are accounted for as they are responsible for opening
mode crack displacement. A negative sign of overall SIF at any point along crack edge indicates
compressive stress at that point and hence the crack is assumed closed there. Similarly positive
sign of SIF indicates tensile stress and the open state of crack. Thus the position along the crack
edge where SIF changes its sign is the crack closure line position (CCLP). Once the CCLP is
ascertained, the flexibility values are found by applying appropriate integration limits in Eq. (25).
Once the 6� 6-flexibility matrix is obtained using Eq. (28) the corresponding stiffness matrix for
the crack element is obtained from Eq. (31) as discussed in the previous section and the global
stiffness matrix can be assembled. However, the stiffness matrix obtained is in rotor-fixed co-
ordinates and for transforming the matrix from the rotor fixed to the stationary co-ordinates, the
global transformation matrix [Tg] is assembled using the elemental co-ordinate transformation
matrix [Te] given by

½Te	 ¼

1 0 0 0 0 0

0 cosðyÞ sinðyÞ 0 0 0

0 �sinðyÞ cosðyÞ 0 0 0

0 0 0 1 0 0

0 0 0 0 cosðyÞ sinðyÞ

0 0 0 0 �sinðyÞ cosðyÞ

2
6666666664

3
7777777775
:

Using the assembled global co-ordinate transformation matrix, the global stiffness matrix is
transformed from the rotating to the stationary co-ordinate system using the following relation:

½K 	s ¼ ½Tg	T½K 	r½Tg	:
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The above updated stiffness matrix along with an updated force vector corresponding to the new
position of the rotor are then used to reevaluate the response of the rotor for the next one degree
of rotation using Eq. (32). The response along with the new updated stiffness matrix is used to
estimate the nodal forces on the crack finite element [Eq. (33)]. The nodal forces in turn are used in
estimating the SIF, the sign of which gives amount of crack opening. The stiffness matrix is
evaluated and the process is repeated. Thus at every iteration, the overall stiffness matrix of the
rotor system is updated by reevaluating the stiffness matrix of the crack finite element. The
process of estimating response continues till the difference between the response for a cycle of
rotation and that for its previous cycle is within a reasonably low tolerance value (0.1%).
Response data is stored for each degree of rotation.
The breathing model described in this section gives a continuous and more realistic variation of

stiffness compared to the open crack model used previously in literature. The model forms a
strong foundation for study of coupling of vibrations between bending, longitudinal and torsional
vibrations in a cracked rotor.

4. Coupling of bending and torsional vibrations

To establish coupling of bending and torsional vibrations, a simply supported rotor–bearing
system with a single centrally situated disc of mass 1 kg is considered. A single transverse surface
crack is assumed just adjacent to the central disc. The total rotor span is divided into 14 elements
of equal length (Fig. 1c). A crack element that has stiffness properties as described in Section 2, is
used to represent the crack. Rest of the rotor is modelled with Timoshenko beam elements with six
degrees of freedom per node [22]. To start with, unbalance response of an uncracked rotor with
and without torsional excitation is estimated. The response is then compared with that of a
cracked rotor. The distinguishing features of the response of cracked rotor from the point of view
of crack diagnosis are discussed.
The relevant natural frequencies obtained from the eigenvalue analysis of the rotor are as

follows:
Uncracked rotor, bending: 221 rad/s and torsional: 790 rad/s.
Cracked rotor ( %a ¼ 0:4), bending: 208 and 216 rad/s and torsional: 778 rad/s. It may be noted

that for the cracked rotor, the natural frequencies are evaluated based on the reduced stiffness
corresponding to fully open crack state (neglecting the breathing of crack) in order to ascertain
extent of drop in the natural frequency.
Since the breathing of crack causes a continuous response-dependent change in the stiffness

matrix of the crack element, the Newmark method of direct numerical integration is used to
estimate the response. The unbalance eccentricity of 1.6e-5m is assumed. The rotor rotates at
22 rad/s, which is approximately 1/10th of bending critical speed.
Initially an unbalance response of the uncracked rotor is determined. Figs. 5a and c show the time

domain response and Figs. 5b and d show the corresponding frequency spectra in the vertical and
horizontal directions showing only rotational frequency of vibration with absence of any higher
harmonic frequencies. No torsional response was observed in this case (hence not shown in the figure).
Next, a torsional excitation of 100 sin(221t)Nm is applied at the first node of the uncracked

rotor in addition to unbalance excitation at the disc location. The response obtained is shown in
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Fig. 6. From Figs. 6a–d, it may be noted that the frequency content and the amplitudes of
vibration in lateral directions show negligible change with the given torsional excitation.
However, the response in the torsional mode of vibration shows torsional excitation frequency of
35Hz (Fig. 6f). The torsional excitation is applied to check if this excitation generates any
response in the lateral vibration due to coupling of torsional and lateral bending vibrations. Due
to absence of any coupling mechanism in an uncracked shaft, the torsional excitation fails to
generate any response in bending mode of rotor vibration (Figs. 6b and d).
The response of a cracked rotor is now studied under similar excitation conditions (unbalance

and unbalance with torsional harmonic excitation). The unbalance response of a cracked rotor
with crack depth ratio of %a ¼ 0:3 is shown in Fig. 7. No torsional or axial excitation is applied to
the system in this case. The lateral vibrations in both vertical and horizontal directions (Figs. 7b
and d) contain 1st, 2nd and 3rd harmonic of rotational frequency. Similarly, the longitudinal and
torsional vibration spectra (Figs. 7f and h) show first two harmonics, the torsional vibration
spectra also show 4th harmonic. The existence of rotational frequency and its higher harmonics in
the torsional vibration spectrum without any explicit torsional excitation does indicate an
existence of a prominent coupling mechanism. The unbalance excitation in lateral direction
generates torsional vibrations in the cracked rotor. Similarly, the axial vibration response also
indicates the rotational frequency and its second harmonic (Figs. 7e and f). These frequency
components in the axial vibration in the absence of any external axial excitation are indicative of a
coupling mechanism between bending and longitudinal vibrations. The results shown in Fig. 7
thus indicate the coupling phenomenon between the bending and the torsional vibrations as well
as between the bending and the longitudinal vibrations.
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In order to enhance the signals in all these spectra and to explore further the coupling
phenomenon due to crack, a harmonic torsional excitation (100 sin(oet)) is applied at node 1 of
the FE model. The torsional excitation is in addition to the unbalance excitation in the lateral
direction at the disc location. The coupling of longitudinal, bending and torsional vibrations is
already indicated in the previous case of unbalance excitation (Fig. 7). In the present case, the
frequency of torsional excitation oe is tuned to the bending natural frequency of the system (o0).
The purpose of such excitation is to excite the system torsionally with a frequency that has

relevance in the lateral mode of vibration of the rotor and then check if this excitation generates
resonance in the bending vibration of the rotor. With this excitation, if the bending natural
frequency is prominently observed in the lateral vibration spectrum, it would indicate a coupling
mechanism between torsional and bending vibration in the rotor. Since in the present rotor-
bearing system no other coupling mechanism is considered, the response would eventually
establish the presence of crack in the rotor. Hence the torsional excitation as mentioned above is
applied. The crack depth ratio considered is %a ¼ 0:3 and the rotational speed of the rotor is 22 rad/s
(3.5Hz), which is 1/10th of the bending natural frequency of the uncracked rotor (35Hz). The
time domain and frequency domain signals are shown in Fig. 8. The time domain signal for two
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cycles of rotation in horizontal and vertical directions (Figs. 8a and c) show apparent presence of
torsional excitation frequency (35Hz) along with a low rotational frequency component
(o=3.5Hz). These time domain signals show beating phenomenon. The spectrum in vertical
direction (Fig. 8b) show first three harmonics of the rotational frequency and also the bending
natural frequency (o0) that equals the torsional excitation frequency (oe) The frequency o0 is
flanked by side bands separated by rotational frequency (o). The amplitude of bending natural
frequency shows a substantial difference in the two directions. The o0 frequency component is
1.7e-5 in the horizontal direction (Fig. 8d) compared to 5.7e-6 in the vertical direction (Fig. 8b) i.e.,
more than 3 times stronger in the horizontal direction. The rotational frequency and its
harmonics modulate the torsional excitation frequency. The interaction of the torsional excitation
frequency with the rotational frequency and its harmonics leads to the appearance of sum and
difference frequencies (oe7mo) around the bending natural frequency.
Considering the axial vibration time domain signal without torsional excitation (Fig. 7e), the

application of torsional harmonic excitation brings about a distinctive change in the signal
(Fig. 8e). The presence of high-frequency components is seen in the time domain signal that is
confirmed in the frequency spectrum (Fig. 8f). The spectrum shows sidebands (o07o and
o072o) around the bending natural frequency (o0). Although small in amplitude, these sum and
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difference frequencies in the longitudinal spectrum indicate a coupling between lateral and
longitudinal vibrations as these frequencies are observed in the bending vibration spectrum. It
may be noted that there is no longitudinal excitation given to the cracked rotor.
The presence of bending natural frequency in the lateral vibration spectrum under the torsional

harmonic excitation is an indication of the presence of transverse crack in the rotor. The stronger
bending natural frequency component in the horizontal direction than in the vertical direction
that is observed here is also an important crack signature.
The sensitivity of these frequencies observed in the lateral vibration spectrum due to the

torsional harmonic excitation to the crack depth is shown in Fig. 9. The figure shows that the
bending natural frequency component is more sensitive in horizontal direction than in vertical
direction. The variation of amplitude of this frequency component is non-linear. The increase in
the amplitudes of other frequency components is marginal as compared to the natural frequency
component in the horizontal direction. The frequency of interest o0 that indicates the coupling
between torsional and lateral vibrations and hence the presence of crack, is highly sensitive to the
crack depth.
Next, the harmonic torsional excitation is applied to the cracked rotor rotating at a speed

that is not equal to integer fraction of bending critical speed. In this case, o=27 rad/s (4.3Hz)
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and harmonic torsional excitation is with frequency 120 rad/s (19Hz). Thus neither the higher
harmonics of the rotational frequency nor the torsional excitation frequency match with the
bending natural frequency (35Hz). Therefore in the lateral vibration spectra shown in Figs. 10b
and d, the bending natural frequency o0 is not seen. Instead the torsional excitation frequency oe

and side frequencies around oe namely, oe7o and oe72o are seen. The spectra show the
rotational frequency and its higher harmonics due to the non-linearity of crack. The side
frequencies are present due to interaction between torsional excitation frequency and the lateral
rotational frequency and its harmonics as explained earlier. These lateral vibration spectra (Figs.
10b and d) show some frequency components (sum and difference frequencies around the
torsional excitation frequency) that are not harmonics of rotational frequencies. These frequencies
are due to the coupling between the torsional and lateral vibrations and hence indicate the
presence of crack in the rotor.
The sum and difference frequencies that were observed in the previous case (Fig. 10f) are not

observed in the longitudinal vibration spectrum here (Fig. 10f). It may be noted that the sum and
difference frequencies in the bending vibration spectra, which can appear in the longitudinal
spectrum due to coupling phenomenon, are lower order of magnitude (5e-7 in Figs. 10b and d
compared to 2e-6 in Figs. 8b and d).
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5. Coupling of longitudinal and torsional vibrations

The coupling of torsional and bending vibrations in the cracked rotor under the torsional and
unbalance excitations has been investigated in the previous section. In this section, the coupling
between torsional and longitudinal vibrations is studied under the axial impulse excitation.
Simulations in the previous section have indicated that an additional external excitation is
necessary to reveal crack related features in the vibration response. It may be noted that the
vibrations with reasonable amplitudes are usually seen when resonance condition is effected in the
mode concerned. Darpe et al. [19] have shown that the axial impulses can be used to excite
vibrations in the bending mode. In this section the axial excitation in the form of periodic impulses
has been used to excite vibrations in the torsional mode in order to exploit the coupling between
longitudinal and torsional vibrations. Vibration spectra in all the three modes, namely bending,
longitudinal and torsional, are presented for various cases.
To start with, unbalance response of the cracked rotor with %a ¼ 0:4 is investigated without any

external axial excitation to ascertain the frequency content of the rotor’s unbalance response. The
rotational speed is 1/10th of the fundamental natural frequency in torsional mode and the
unbalance eccentricity of 1.6e-5m is considered. The Newmark method of direct numerical
integration is used to estimate the response considering the response-dependent breathing model
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as discussed in the earlier section. Fig. 11 shows time and frequency domain response of the
cracked rotor wherein apart from the first few harmonics of the rotational frequency, the lateral
vibration spectra (Fig. 11b) do not show any other frequency components. These lateral vibration
frequencies also appear in longitudinal and torsional vibration spectra as shown in Figs. 11d and f
respectively. This is despite the absence of any excitation in longitudinal and torsional modes, thus
indicating a coupling mechanism between bending and longitudinal and also between bending and
torsional vibration.
Next, the cracked rotor is subjected to axial impulses. The axial velocity of the end node is

suddenly reduced to simulate application of an impulse. For single axial impulse per rotation, the
axial velocity is decreased (by 2m/s) when the rotor is in reference position i.e., y=0�, whereas for
multiple impulses, the change of velocity is effected after every 360/i degree of rotation, i being the
number of impulses per rotation. Application of a single impulse per rotation has not changed the
response of cracked rotor substantially, except in longitudinal direction and hence is not presented
here.
However, when several impulses (e.g., four impulses per rotation) are applied, the spectrum of

torsional vibration shows noticeable changes (Fig. 12d). The spectrum shows the impulse
excitation frequency (oI) and its harmonics (noI). Due to interaction of these excitation
frequencies (noI) with the rotational frequency and its harmonics (mo), the sum and difference
frequencies (noI7mo) are observed around the excitation frequencies (noI). The natural
frequency of torsional vibration (125.7Hz) is also prominently seen in the spectrum. It may be
noted that the frequency component 2oI+2o matches with the torsional natural frequency.
Because of the presence of these frequencies, the time domain signal of torsional vibration
(Fig. 12c) shows considerable change compared to the unexcited case (Fig. 11e).
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Fig. 11. Unbalance response of a cracked rotor ( %a ¼ 0:4) without axial impulse excitation (o=79 rad/s).
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The presence of rotational frequency and its harmonics in the torsional vibration indicate the
coupling between the lateral and torsional vibration as these frequencies are generated in the
bending vibrations due to non-linear effects of the breathing crack under the influence of
unbalance and gravity.
The effect of axial excitation shows slight change in the frequency spectrum of the lateral

vibration (Fig. 12b), compared to the spectra for unexcited case (Fig. 11b) in the form of stronger
third harmonic component (3o). This is explained from the fact that the 3o frequency
component, which is generated due to the non-linear behaviour of the breathing crack, matches
with one of the sum and difference frequencies (oI-o i.e., 37.7Hz) generated in the lateral
vibration due to the axial excitation frequency. Another simulation is carried out in which three
axial impulses per rotation (oI=3o) are applied to the rotor. The results show a stronger 2o
frequency component compared to the case without any axial excitation. In this case, oI-o
frequency component matched with 2o harmonic frequency.
When the number of impulses are increased to 10 impulses per rotation, the axial impulse

excitation frequency (oI=125.7Hz) matches with the torsional natural frequency (oTo) and hence
the amplitude of torsional natural frequency increases considerably (Fig. 13b). The sum and
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Fig. 12. Unbalance response of a cracked rotor ( %a ¼ 0:4) with axial impulse excitation (four impulses per rotation);

oI=50.3Hz, o=12.6Hz.
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Fig. 13. Unbalance response of a cracked rotor ( %a ¼ 0:4) with axial impulse excitation (10 impulses per rotation);

oI=125.7Hz, o=12.6Hz.
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difference frequencies (oI7mo) around the impulse excitation frequency are also stronger in
amplitude. Traces of sum and difference frequencies (2oI7mo) around the second harmonic of
the axial excitation frequency (2oI i.e., 251.5Hz) are also seen in the spectrum but are very small
in amplitude.
When the crack depth ratio is reduced to %a ¼ 0:2; the effect of coupling of vibrations even with

such a small crack depth is seen in the torsional vibration spectrum (Fig. 14a) in which the side
bands due to interaction between axial and torsional frequencies are seen. Although the torsional
natural frequency component for lower crack depth is smaller in amplitude, the side bands around
it are quite strong and comparable in amplitude to the rotational frequency and its harmonics.
Fig. 14b shows similar response for crack depth of %a ¼ 0:3; where the amplitudes of all the
frequency components show noticeable increase, indicating the sensitivity of these frequency
components to crack depth.
Response of the cracked rotor rotating at 50 rad/s (7.96Hz), which is not an integer fraction of

the torsional natural frequency, is also studied. The impulse excitation frequency with 10 impulses
per rotation is 79.6Hz, which is different from the torsional natural frequency (125.3Hz). None of
the higher harmonics of rotational frequency (7.96Hz) matches with the torsional natural
frequency. Fig. 15a shows the effect of axial excitation on the lateral vibration response as the
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excitation frequency (79.57Hz) and its harmonics are seen modulated by rotational frequency and
its harmonics leading to the presence of side bands around noI in the lateral vibration response.
Although side bands are stronger around oI, they are also found stronger around 5oI (397.85Hz).
It may be noted that the third natural frequency of bending vibration is 416Hz for %a ¼ 0:3:
Although the second natural frequency of bending vibration (228Hz) is also closer to one of the
harmonics of axial excitation frequency (3oI=238.7Hz), the side bands around 3oI are not as
strong as those around 5oI. However this is expected due to the fact that the crack is positioned
near midspan and hence is closer to the node position of the second mode. The response with the
crack situated at approximately 1/3rd the span (not shown here) has shown increased amplitude
of side bands around 3oI frequency.
Although the axial excitation frequency is not explicitly seen in the lateral vibration spectrum,

its presence in the spectrum is through the sum and difference frequencies that are produced due
to the interaction of the axial excitation frequency and the rotational frequency and its harmonics.
It has been shown in Ref. [19] that the axial excitation frequency appears in the lateral vibration
when it matches with the bending natural frequency.
The axial excitation frequencies are thus observed in the lateral vibration spectrum (Fig. 15a)

and also in the torsional vibration spectrum (Fig. 15b). The sum and difference frequencies in
the torsional vibration spectrum are because of the interaction of axial excitation frequencies and
the rotational frequency and its harmonics. Since the rotational frequency and its harmonics are
due to the unbalance and gravity excitation in the lateral vibration, the presence of these
frequencies in the torsional vibration spectrum indicates the coupling between the torsional and
lateral vibrations. The frequency spectra in Fig. 15 thus show all the three coupling mechanisms,
namely, between longitudinal and lateral vibrations, between longitudinal and torsional
vibrations as well as between lateral and torsional vibrations.

6. Conclusions

Coupled longitudinal–bending–torsional vibrations have been studied using the finite element
model of a cracked rotor. The stiffness matrix of a Timoshenko beam element with six degrees of
freedom per node is modified to account for the presence of crack and then this updated matrix is
used to represent the crack. The stiffness matrix accounts for all the coupling mechanisms that are
known to exist in a cracked rotor. The coupling is studied with a response-dependent non-linear
breathing crack model accounting the partial crack closing. The model is useful in analyzing the
response of cracked rotor to any type of excitation encountered in a rotor-bearing system, steady
or transient. The crack model thus forms a strong foundation for the study of coupling of
vibrations between bending, longitudinal and torsional vibrations in a cracked rotor.
The torsional harmonic excitation and periodic axial impulse excitation to the cracked rotor is

used and the response of the cracked rotor in torsional, lateral and axial directions is studied in
both time and frequency domain.
When the torsional harmonic excitation with frequency equal to the bending natural frequency

is applied to the cracked rotor, bending natural frequency and sum and difference frequencies are
observed in the lateral vibration spectrum due to interaction of the torsional excitation frequency
with rotational frequency and its harmonics. The presence of bending natural frequency in the
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lateral vibration spectrum is shown to be sensitive to the crack depth. The longitudinal vibration
spectrum shows the presence of the bending natural frequency and the sum and difference
frequencies around it. These results thus establish the coupling between torsion and bending as
well as between bending and longitudinal vibrations.
The coupled torsional–longitudinal vibrations of a rotating cracked shaft using breathing crack

model have been studied here. Such analysis has not been reported in previous studies. The
periodic axial impulses when tuned to the torsional natural frequency excite resonance conditions
in the torsional vibrations leading to the presence of the torsional natural frequency flanked by
side bands separated by the rotational frequency in the torsional vibration spectrum. Thus the
frequency spectrum of torsional vibrations exhibits both the coupling mechanisms; axial–torsional
due to presence of axial excitation frequencies and torsional–bending due to the presence of the
side bands separated by rotational frequency around axial excitation frequencies. The axial
excitation frequencies are present in both the torsional and the bending vibration spectra showing
all the coupling mechanisms in one place, namely, axial–bending, axial–torsion and torsion–
bending.
The rotor crack diagnosis based on harmonics of rotational frequency like 2x is sometimes

unreliable as other faults also generate these frequencies. The frequency spectra presented here for
cracked rotors are generally not exhibited by other common faults as most of the faults do not
couple the vibrations in bending, longitudinal and torsion. The interaction of external excitation
frequencies considered in this study with the rotational frequency and its harmonics of the cracked
rotor due to the coupling for a cracked rotor has resulted in interesting and unique frequency
patterns that could be very useful from viewpoint of diagnosis of crack. Hence the crack detection
based on the response to such excitations could prove to be more reliable as well as convenient
since the excitation is applied to the rotating shaft and the rotor is not required to be brought
to rest.

Appendix A. Nomenclature

a depth of crack
D diameter of the shaft

%a crack depth ratio (a/D) for crack
l length of the shaft element containing crack
m mass of the disc
e eccentricity of mass of disc from its geometric centre
y angle of rotation of shaft
E Young’s modulus
Pi nodal forces on the crack element
ui displacement along ith co-ordinate
kx, kZ direct stiffness of the shaft in x1 and Z1 direction respectively
kxZ, kZx cross-coupled stiffnesses
o rotational speed in rad/s
oe torsional harmonic excitation frequency
oI axial impulse excitation frequency

ARTICLE IN PRESS

A.K. Darpe et al. / Journal of Sound and Vibration 269 (2004) 33–6058



o0 Bending natural frequency
oTo torsional natural frequency
t time in s
½M	s; ½C	s; ½K 	s mass, damping and stiffness matrix of the rotor system in stationary co-ordinate

system
½K 	r stiffness matrix of the rotor system in rotating co-ordinate system
qs rotor response in stationary co-ordinate system
qr rotor response in rotating co-ordinate system
f s forces on the rotor in stationary co-ordinate system
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